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an Asymptotic Case of Plane Turbulent Motion of a Weakly 
of a Magnetic Field 

SUMMARY 
The final period of decay of homogeneous turbulence in a weakly conducting rotating fluid in the presence of a 
magnetic field is investigated. By asymptotic expansion techniques, the expressions of the kinetic and magnetic 
energy tensors are established. After a first stage similar to the non-rotating case, it is shown that modulated plane 
turbulence occurs when both the applied magnetic field and the axis of rotation are parallel. 

1. Introduction 

In the last period of decay of magnetodynamic turbulence, the Reynolds numbers are very low. 
The inertial forces are negligible compared with the viscous forces ; hence the quadratic terms 
may be neglected in the equations of motion which are consequently linear. 

The governing equations for an incompressible homogeneous rotating fluid in the presence 
of a uniform magnetic field were established in 1955 by Lehnert [1] who derived the expression 
of the kinetic and magnetic energy densities in wave number space. The law of decay of the 
total energy can be obtained by integration of the energy densities over the whole wave number 
space, which requests the knowledge of the initial energy distribution. Assuming initial 
isotropic turbulence and zero magnetic initial fluctuations, Deissler [2], in 1963, calculated 
numerically the energy decay for different ratios of the kinematic and magnetic viscosities 
n = v/2 in a non-rotating fluid. Anisotropic initial conditions for the kinetic energy have been 
established by Batchelor and Proudman [3] in 1956 and extended in 1963 to the magnetic case 
by Alexandrou [4] who found analytically a law of decay in t -~ for the kinetic and magnetic 
total energies in a non-rotating fluid with n = 1. The general case was solved by Nihoul [5] in 
1965. He found that there were two contributions to the total energies: one decays asymp- 
totically as t-~, leads to equipartition of energy between the magnetic and kinetic fields and 
dominates for n nearly equal to unity; the other one decays asymptotically as t-3, leads to a 
partition of energy between the two fields in the inverse ratio of the diffusivities and dominates 
for n much larger or smaller than unity. The t -  3 component was directly found by Nihoul [6] 
in 1967 with Golitsyn's simplified equations [7] for low magnetic Reynolds number. 

In this paper, the case of a weakly conducting rotating fluid is investigated. Golitsyn's 
equations are adopted and it is assumed that the applied magnetic field B and the axis of rota- 
tion are parallel. Asymptotic expansion techniques are used to obtain each component of the 
energy tensors. The anisotropic initial conditions established in 1967 by Saffman [8] are chosen 
for simplicity. The results are easily adapted to Batchelor and Proudman's conditions. 

It is found that the energy decay passes by two successive asymptotic stages. In the first one, 
all elements of the energy tensors decrease as t -  2 whereas the second stage is strongly aniso- 
tropic. All tensor components decay as t -2  except the exchange terms between the energy in 
the direction of both the rotation axis and the applied magnetic field B and the energy con- 
tained in the perpendicular plane which decay as t -a  and hence become rapidly negligible. 
It is also established that the kinetic and magnetic energies are both equally shared between 
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the B-direction and the perpendicular ones. This indicates the existence of an asymptotic plane 
turbulent motion modulated perpendicularly with the same energy. The appearance of the 
short transition period between the two regimes is a fimction of the parameters ; it is shown that 
both successive stages could be observed in experiments with mercury. 

2. The Basic Equations 

The equations of motion of an incompressible homogeneous fluid rotating with a constant 
angular velocity to can be written in MKS units [1]" 

0v 
& + v" Vv = 2v • to+ vV2v ~- h'  Vh --  V(~ (1) 

3h 
- h . V v - v .  V h + 2 V 2 h .  (2) & 

V . v = O  V . h = 0  (3) (4) 

where the Local Alfv6n velocity h is defined by 

h = (#; ) -~B (5) 

and where 

2 =  (/w) =1 (6) 

P q~ = - + q~o+q~c+�89 (7) 

v is the Velocity, B the magnetic field, # the permeability, p the density, v and 2 respectively the 
kinematic and magnetic viscosity, a theconductivity, p the pressure, qgg and (Pc the graviflc and 
centrifugal potentials, r the position vector. The magnetic field is assumed to be the sum of a 
uniform ambient field and an induced fluctuating field, i.e." 

h(r, t ) -  bo+ b(r, t) (8) 

In the last period of decay of turbulence, the non-linear term may be neglected as compared 
with the viscous term. The conditions of validity of this simplification may be written 

R vL = - -  ~ 1 (9) 

vL 
R~ = ;-- < 1 (10) 

where v and L are characteristic scales of the velocity and length. Let us also define bo and b as 
characteristic scales of the applied and induced Alfv6n velocity. 

The Golitsyn's hypothesis [7] allows further simplifications of equation (2). By analogy 
between equation (2) and the heat conduction equation in a solid body with a diffusivity 2 and a 
source distribution, h �9 V v -  v. Vh, the accommodation time of the field h to a fluctuation of the 
source can be estimated to be of order 2 - 1 L 2. Assuming r >> 2-1 L 2, where z is the characteristic 
time of modification of the turbulent field, we may neglect Ob/& as compared with 2V 2 b. The 
comparison of the order of magnitude of the subsisting terms indicates that b~O(Rmbo), 
Consequently the induced magnetic field may be neglected as compared with the applied one 
and the governing equations reduce to: 

~v = 2v • to + vV ~ v + b o. Vb - V~o (11) 
& 

b o. Vv + 2VZb = 0.  (12) 
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In fact, Golitsyn assumed T ~ O(v-lL) which leads to equation (12) under the only hypo- 
thesis (10). Nihoul [-7] proved that this is not generally true, especially in the last period of 
decay where ~ ~ 0 (v- 1L 2) ; he showed that two additional conditions were requested for the 
validity of Golitsyn's equations : 

V 
< 1. (13) 

(22) 2 1L2 0 b ~  
vL  v 2 -  ~ 1. (14) 

bob 

Let us mention that these conditions are verified in laboratory experiment with mercury 
[,-12] ; hence Golitsyn's hypotheses are not restrictive in this case. 

Defining the Fourier transforms* of v, b, qo by 

Vii(k, t) = I vi(r, t) e i*" dr  

Si(k, t) = Sbi(r, t ) e - i k ' d r  

(k, t) = l q0 (r, t) e - i " ' d r ,  

equations (11), (12), (3) and (4)can be written, 

- ikkbokBi-vk2V~+2eiZm(0,.V~-ikidP, (15) & 

i kk bok V i -  2k 2 Bi = O, (16) 

k~ Vii = 0 ,  (17) 

kiBi = 0.  (18) 

where ca,. is the usual Poisson symbol. Eliminating B i, equations (15) and (16) reduce to 

D V  = A V - i k r  (19) 

where the operator D is defined by 

(kkb~ + vk 2 (20) 
D - ~7 + 2k ~ ' 

and the tensor A by: 

(0 "ol --(0.02 

A-=2 -co  3 0 1 �9 

(O2 --(01 

After some manipulations, equation (19) reduces to 

4 
D 2 V = - ~ ((0- k) 2 V 

(21) 

(22) 

the solution of which is 

with 

(23) 

* These transforms must be regarded as generalized functions (Lighthill, 1960) or as Fourier transforms of hypo- 
thetical fields which are zero outside a very large box and otherwise identical to the real fields. 
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(kkbok) 2 
g = 2k ~ q- vk2 , 

A (k) and B (k) constant. 
The spectral kinetic energy density tensor may be defined either by 

a,(k, t)= �89 t)v*(k, t) (24) 

or as usually by 

f2ij (k, t) = 1�89 (vi (x, t) vj(x + r, t)) e-i~, dr (25) 

where the star denotes a complex conjugate and where ( ) indicates that mean value on all 
points a distance r apart has been taken at time t. The z-axis being chosen in the direction of the 
axis of rotation, the kinetic energy may be written 

f2,j=�89 -2x' {AiA*+B,B*+A,B*exp  {4ikka~t)+A*B~ex p (-74ikk-3()}. (26, 

3. The Initial Conditions for the Kinetic Energy 

Idealizing the process of the initial development of homogeneous turbulence, Batchelor and 
Proudman [3] assume that its large-scale structure is the same as if it had been homogeneous 
for all time and had developed from an initial stage where all integral moments of cumulants of 
the velocity distribution converged ; they obtain for the initial value of f2i~: 

1 kikt~ 6~m k, kp (27) f2~ = ZRlm,1, air k 2 ] ke j 

where Rim,p is constant. These results were extended to the case where a magnetic field is present 
by Alexandrou [4] and Hassan I-9]. 

In his study, Deissler [-2] assumed initial isotropy of the turbulence, which leads to the 
simpler values: 

f lo= Ck2(6i~ kikj~ (28) 
- T T ]  

where C is constant. 
Though too restrictive in the present work, let us mention that those conditions suppress 

the co-dependance of O~j. 
In 1967, Saffman [8] found new values for the initially anisotropic velocity spectral tensor : 

Y2 ~ = M,m (6~, - 7y-J[k~k'\ / _ k;km~ (29) 

where Mz~ is constant. These expressions were obtained by following closely Batchelor and 
Proudman's work but using a modified and less restrictive basic hypothesis : the convergence 
concerns the vorticity instead of the velocity. In other words, the field of turbulence is generated 
initially by random impulsive forces with convergent integral moments of cumulants. 

There seems to be no reason why (27) and (29) should not be applied in the case of a fluid in 
uniform rotation. Indeed the equation for the velocity correlation tensor Rij (r, t) reads" 

~t 0 , ~pu) ~p' u i Rij(r, t) = _--- (UiUkUj-- RiUkUj) q- q- 2vV2 Ri~+ 2com(SilmRuq- ej,,,Rii ) (30) 
gr k c~ri t3r ~ 

with 

, r = x -  x '  . 
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Essentially this equation was established by Batchelor and Proudman, except for the last term 
due to the rotation which is added here. Considering the order of magnitude in r, for large r, of 
the different terms, Batchelor and Proudman [let us remind that Saffman used the same argu- 
ments] proved that, according to their hypothesis, the pressure term was in r-5 and so were 
R~j and (~3/&)R~s, whereas the non-linear term was exponentially small. On this basis, the ex- 
pressions (27) were derived independently from equation (30). If the fluid is rotating, the basis 
hypothesis remains unchanged and the order of magnitude of the different terms are unaffected, 
this being compatible with the additional terms. We have not been able to find any physical 
reason of an eventual modification of the order of magnitude of R~j due to the Coriolis force 
influence*. Hence we may assume that (27) and (29) still hold for a rotating fluid. 

For simplicity the initial conditions (29) established by Saffman are used here. It could be 
shown easily that they lead to the same results than these of Batchelor and Proudman, but 
larger of one order in t. 

4. Spectral Energy Tensors 

As simplifying hypothesis, parallelism of the rotation axis and the applied magnetic field is 
assumed; then 

bo = (0, O, bo). (31) 

To obtain the spectral energy density tensor, each f2~s is expressed in function of the initial 
conditions (29) and is integrated over a sphere of radius k : 

Oii(k, t) = ~ dO Ois(k, q~, tp, t)k2 d(cos q)) . (32) 
-1 

Spherical coordinates are used, q) referring to the axis of rotation. 
We consider a non-dimensional time t/O, where 0 is the inhibition time introduced by 

Nihoul : 

2 + v  2 
0 - 4bo2 -~ 4b 2 . (33) 

Integration over ~o** can be done analytically by an asymptotic method-- the method of 
the steepest descent [11J--for large values of t/O :*** 

t 
>> 1. (34) 

After integration over the whole k-space, the following asymptotic forms are obtained for 
kinetic energy: 

4. 

 ij(t) ~ [ t - 2 + Y t -  2 ((DO)q e -  S~176176 
q=0 

for ij = 11, 22, 33, 12, 21; 

~'~ij ( t) ~ ~Z { C(ilJ)(t/O)- i t -  2 ~_ e -  8~176176 [ C(~J) t - 2 .q._ c(~j) (DOt-  2 _]_ 

+ C~ s~ ((D0) z (t/O) 1 t -  2 + Cg, j)((DO)3 t-2 + C~j)((DO)" t -  2] } (35) 

for ij = 13, 31, 23, 32 

* G. K. Batchelor (private communication) did confirm this assertion and justifies the inconceivability of a con- 
tribution of order larger than r -  5 by the linearity in the velocity correlation tensor of the term arising from the Coriolis 
force. 
** For  the details of those calculations, 'see C. Frankignoul, 1968, [113]. 
*** Also in the less interesting case t/O~ 1, [10]. 
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with 

c~- 32vbo (36) 

and C~ constants. Similar expressions are found for the magnetic energy, using equation (16). 

5. The Laws of Decay 

The total kinetic and magnetic energies decay as t-2 and are independent of cn---Coriolis 
forces are conservative ; their asymptotic values are explicity: 

rc 2 ~_2 (Mll + M22 + 2M33)t -2 (37) 
E (t) 16vb o u v 

M 7Z~2 ~/~(  ll q-M22-}-2M33)t -2 (38) M(t) 16Xbo 

This result corresponds to the t-3 law obtained by Nihoul [53, [12] in the non-rotating case 
with Batchelor and Proudman's initial conditions. We have the property: 

E(t) 
- - ,  (39) 

M(t) v 

which was found by Nihoul except for a factor 3 due to the different order in k of the initial 
conditions (27) and (29). 

The law of decay of the kinetic and magnetic energy may take two different forms, according 
to the value of the parameter 80) 2 02 (t/O). In the case 

80)2 02 t ~ 1 (40) 

the asymptotic form of the kinetic energy tensor is : 

/�89 + Mzz)t -2 Mlat -2 2M13t -2 ) 

O(t) ~ ~ M12 t-2 �89 -2 2M23t -2 (41) 

\ 2M13 t-2 2M23 t-2 4M33t -2 

The magnetic energy tensor has the same value, with fi instead of c~ : 

fl - 322bo " (42) 

Comparing the energy in the rotation-axis andB direction with the total energy, it is found that : 

Q33(t) 6M33 (43) 
�89 Mll+M22+ZM33 

which is an analytical confirmation of the value 3, Deissler [2] observed on his computed 
curves in the case of non-rotating turbulence with initial isotropy. (Then Mll = M22 = M33 ). 
We may conclude that the laws of decay are not modified by a uniform rotation for small 
values of 8(2) 2 02 (t/O). 

In the case 

t 
8co202 ~ ~> 1 (44) 

the kinetic energy tensor takes the asymptotic form: 
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/�88 ~ +Mez + 4M33) t -2 

Q(t)~ c~ 1M12 t-2 

\ ().M,3/2b2o)t -3 

�89 t - 2  

�88 + 3M22 § -2 

()~M23/2bZo)t -3 

171 

(2M1J2bZo)t -3 \ 

(2Mz3/2b~)t - 3 ) 

(Mll +M22 +2M33)t -2 / 

(45) 

We have the relation: 

~11-~'~22 = ~-~33 �9 

The same expression still holds for magnetic energy, with fl instead of c~. 

(46) 

The main feature of this second case is that the exchange terms between energy along o) 
and B and energy in the planes perpendicular to that direction decay faster by one order in t 
and consequently become rapidly negligible, leading to independent behaviour of these ener- 
gies though they always remain equal, as it is seen by (46). We are in presence of a plane tur- 
bulent motion, modulated perpendicularly with the same total energy. The form of the energy 
tensors 

X (47) 

O 

combined with (46), suggest a striking analogy with the inertial tensor of-a flat body rotating 
around an axis perpendicular to its plane of symmetry. 

The results (45) are in agreement with predictions of Lehnert [1] who established that the 
time dependence of the vorticity tensor elements with at least one indice in the rotation axis 
direction was not influenced by the Coriolis force. As the vorticity is the curl of the velocity, this 
corresponds to f211, ~222, ~212. We might expect that the modulated plane turbulent motion 
becomes a ordinary plane turbulent motion when t9 and B are not parallel (which was not 
imposed by Lehnert) with ~'-233 decreasing then as t-3. Let us finally notice that an eventual 
initial anisotropy of energy has less influence in the second stage than in the first. 

The two successive asymptotic regimes are separated by a short transition period ~ O(102 
sec). With a suitable choice of the parameters, for instance usual values for mercury experiments 
like : 

bo~O(10 ) 0~O(10 -2) co~O(1) (48) 

both successive stages could be observed experimentally. Measurements would be much 
simpler in the second stage : the energy has just to be known in one direction to have the ratio 
(39); this would give additional information to decide between Batchelor's and Saffman's 
hypotheses. 

6. Conclusions 

The last period of decay of the kinetic and magnetic energy of homogeneous turbulence in a 
weakly conducting fluid in uniform rotation is characterized by two different asymptotic 
behaviours which may occur successively. In the first regime, the rotation does not modify the 
time dependence of all energy tensor components which remains in t-  2 with Saffman's initial 
conditions (t-3 with Batchelor and Proudman's one). In the second regime which is strOngly 
anisotropic, the rotation gives rise to independent behaviour of the energy along the axis of 
rotation and the applied magnetic field, assumed to be parallel, and the energy in the perpen- 
dicular planes though these two contributions remain equal. The modulation of the plane 
turbulent motion arises from the faster decay, in t -3  (t -4 with (27)), of the corresponding 
exchange terms and seems to be characteristic of the parallelism of co and B. 

Our results suggest an analogy between the effect of rotation and stratification as observed 
in non-turbulent fluids (e.g. [13]). 
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